Preliminary studies of bioactive compounds and color in Mexican read wines from Baja California region.
PDF
XML

Keywords

Phenolics compounds
Antioxidant activity
Red wines
Baja California
Flavonoids Compuestos fenólicos
Actividad antioxidante
Vinos rojos
Baja California
Flavonoides

How to Cite

Mendez-Trujillo, V., & Gonzalez Mendoza, D. (2021). Preliminary studies of bioactive compounds and color in Mexican read wines from Baja California region. Revista Colombiana De Investigaciones Agroindustriales, 8(1), 42–49. https://doi.org/10.23850/24220582.3758

Abstract

The total phenolic compounds, total anthocyanin content and antioxidant properties of ten commercially wines based on different grape cultivar from Baja California, Mexico were analyzed.  The results showed that the content of phenolic compounds of Vitis vinifera cv. Petit Verdot and  Petit Syrah  wines  had   the most highest values of  total phenolic content (1188.26   and 1148.13 mg GAE/L, respectively), with respect  the another  wines.  However, wines elaborated with three different cultivars (Cabernet Sauvignon/Petit Verdot/Merlot), and wine from cultivar Petit Verdot presented the highest total flavonoids content (161.06   mg QE/L and 182.64 mg QE/L, respectively) and total  anthocyanin content  (286.38 mg ME/L and 2548.56 mg ME/L, respectively). In contrast only wine from three grape cultivars (Cabernet Sauvignon/Petit Verdot/Merlot), and wine from cultivar Gamay, exhibits the highest antioxidant activity among tested wines. Finally, these results suggest that wine elaborated with different cultivars (Cabernet Sauvignon/Petit Verdot/Merlot), is more beneficial to health than others red wines in terms of its higher antioxidant activity, total anthocyanin content and total flavonoid content

https://doi.org/10.23850/24220582.3758
PDF
XML

References

Arévalo, P. 2018. La ruta turística enológica en Querétaro y Baja California, México: Un enfoque estratégico. Revista Interamericana de Ambiente y Turismo, 14: 122-134. https://dx.doi.org/10.4067/s0718-235x2020000100002

Babincev, L; Guresic, D. 2016. Simonovic, R.Spectrophotometric characterization of red wine color from the vineyard region of Metohi. Journal Agriculture Science, 61:281–290. https://dx.doi.org/10.2298/JAS1603281B

Cervantes-García, D; Troncoso-Rojas, R; Sánchez-Estrada, A; Gonzalez.Mendoz, D; Gutierrez-Miceli, F; Ceceña-Duran, C; GRimado-Juarez, O. 2016. Effects of cadmium on total phenolic compounds and flavonoids in Euglena gracilis. Gayana 80: 1-5. http://dx.doi.org/10.4067/S0717-65382016000100001.

Cetó, X; Gutiérrez, JM; Gutiérrez, M; Céspedes, F; Capdevila, J; Mínguez, S; Jiménez-Jorquera, C; et al. del Valle M. 2012. Determination of total polyphenol index in wines employing a voltammetric electronic tongue. Analytica Chimica Acta, 732: 172-179. https://doi.org/10.1016/j.aca.2012.02.026

Cliff, MA;, King, MC; Schlosser, J. 2007. Anthocyanin, phenolic composition, colour measurement and sensory analysis of BC commercial red wines. Food Research International, 40:92-100. https://doi.org/10.1016/j.foodres.2006.08.002

Coradini, R; Madoşă, E; Petrescu, I; Coradini, C.2014. Change of hue and intensity of color during the fermentation in case of must obtained from various varieties of red grapes from minis‐Maderat winery. Journal of Horticulture, Forestry and Biotechnology, 18: 55– 62.

Covarrubias, J; Thach, L. 2015. Wines of Baja Mexico: A qualitative study examining viticulture, enology, and marketing practices. Wine Economics and Policy, 24: 110-115. https://doi.org/10.1016/j.wep.2015.11.001

Daudt, CE; De Oliveira, FA. 2013. Phenolic compounds in Merlot wines from two wine regions of Rio Grande do Sul. Brazilian Food Science Technology, 33:355-361. https://doi.org/10.1590/S0101-20612013005000045

Di Stefano, R; Cravero, MC; Gentilini, N.1989. Metodi per lo studio dei polifenoli dei vini. L'Enotecnico, 25: 83-89.

Dimitrovska, M; Tomovska, E; Bocevska, M. 2013.Characterisation of Vranec, Cabernet Sauvignon and Merlot wines based on their chromatic and anthocyanin profiles. Journal Serbian Chemical Society, 78:1309-1322. https://doi.org/10.2298/JSC130101026D

Franco-Bañuelos, A; Contreras-Martínez, C; Carranza-Téllez, J; Carranza-Concha, J. 2017. Contenido de fenoles totales y capacidad antioxidante de uvas no nativas para vino cultivadas en Zacatecas, Mexico. Agrociencia, 51: 661-671.

Garaguso, I; Nardini, M. 2015. Polyphenols content, phenolics profile and antioxidant activity of organic red wines produced without sulfur dioxide/sulfites addition in comparison to conventional red wines. Food Chemistry, 179:336-342. https://doi.org/10.1016/j.foodchem.2015.01.144

González A.S.2015. Cadena de valor económico del vino de Baja California, México. Estudios fronterizos 16:163-193.

Granato, D; Katayama, F; Castro, I. 2011. Phenolic composition of South-American red wines classified according to their antioxidant activity, retail price, and sensory quality. Food Chemistry, 129: 366-373. https://doi.org/10.1016/j.foodchem.2011.04.085

Hosu, A; Cristea, V; Cimpoiu, C. 2014. Analysis of total phenolic, flavonoids, anthocyanins and tannins content in Romanian red wines: Prediction of antioxidant activities and classification of wines using artificial neural networks. Food Chemistry, 150:113-118. https://doi: 10.1016/j.foodchem.2013.10.153

Hunter, J; Volschenk, C; Novello, V; Pisciotta, A; Booyse, M; Foucha, GW. 2014. Integrative effects of vine water relations and grape ripeness level of Vitis vinifera L. cv. Shiraz/Richter 99. II. grape composition and wine quality. South African Journal of Enology and Viticulture, 35:359-374. https://doi.org/10.21548/35-2-1022

Galindo-Tovar, ME; Davila-Lezama, M del R; Galicia-Sánchez, A; Olivares-Blanco, E; Guerra-Ramírez, D; Aguilar-Rivera, N; Hernández-Rodríguez, G; Famiani, F; Cruz-Castillo, JG. 2019. Artisanal alcoholic beverages made with Vitis tiliifolia grape in Mexico. Revista Chapingo. Serie horticultura, 25: 169-183.

Ivanova, V; Vojnoski, B; Stefova, M. 2012. Effect of winemaking treatment and wine aging on phenolic content in Vranec wines. Journal Food Science Technolology, 49: 161–172. https://10.1007/s13197-011-0279-2

Ivanova-Petropulos, V; Ricci, A; Nedelkovski, D; Dimovska, V; Giuseppina, P; Versari, A. 2015. Targeted analysis of bioactive phenolic compounds and antioxidant activity of Macedonian red wines. Food Chemistry, 171:412-420. https://doi.org/10.1016/j.foodchem.2014.09.014

Jäntschi, L; Sestraş, R; Bolboacă S.2013. Modeling the antioxidant capacity of red wine from different production years and sources under censoring. Computational and Mathematical Method in Medicine, 267360. https://doi.org/10.1155/2013/267360

Kekelidze, I; Ebelashvili, N; Japaridze, M; Chankvetadze, B; Chankvetadze, L. 2018. Phenolic antioxidants in red dessert wine produced with innovative technology. Annals of Agrarian Science, 16:34-38. https://doi.org/10.1016/j.aasci.2017.12.005

Lachman, J; Šulc, M; Faitová, K; Pivec, V. 2009. Major factors influencing antioxidant contents and antioxidant activity in grapes and wines. International Journal Wine Research,1: 101–121. https://doi.org/10.2147/IJWR.S4600

Lima, D; Guimarães, B; Gaensly, F; Cordeiro, R; Fávero, M; Brand, D; Maraschin, D; Bordin, T.2011. Evaluation of phenolic compounds content and in vitro antioxidant activity of red wines produced from Vitis labrusca grapes. Food Science Technology, 31: 783-800. https://doi.org/10.1590/S0101-20612011000300038

Majo, D; Guardia, M; Giammanco, S; Neve, LL; et al. 2008. The antioxidant capacity of red wine in relationship with its polyphenolic constituents. Food Chemistry, 111:45–49. https://doi.org/10.1016/j.foodchem.2008.03.037

Meraz, L.2017. Preferences in wine consumption in Mexico, wine tourism and chances of success for winemakers entrepreneurs. Revista Estudos e Práticas, 6:21–49.

Mezey, J; Czako, P; Mezeyová, I; Bajčan, D; Kobolkaet R.2016. Changes of selected antioxidant parameters of red wines during maturation. Czech Journal of Food Sciences, 34:356–361. https://doi.org/10.17221/517/2015-CJFS

Miljić, U; Puškaš, V; Hogervorst, J; Torovic´L. 2017. Phenolic compounds, chromatic characteristics and antiradical activity of plum wines. International Journal Food Properties. 20:2022-2033. https://doi.org/10.1080/10942912.2017.1361971

Mira De Orduna R.2010. Climate change associated effects on grape and wine quality and production. Food Research International, 43:1844-1855. https://doi.org/10.1016/j.foodres.2010.05.001

Mulero, J; Zafrilla, P; Cayuela, J; et al. 2011. Antioxidant activity and phenolic compounds in organic red wine using different winemaking techniques. Journal Food Science, 76:C436-40. : https://doi.org/10.1111/j.1750-3841.2011.02104.x

Nile, S; Kim, S; Ko, E; Park, S. 2013. Polyphenolic contents and antioxidant properties of different grape (V. vinifera, V. labrusca, and V. hybrid) cultivars. BioMed Reseach, 718065. https://doi:10.1155/2013/718065

Padilha, C; Telles, A; Corrêa, L; et al.2017. Phenolic compounds profile and antioxidant activity of commercial tropical red wines (Vitis vinifera L.) from São Francisco Valley, Brazil. Journal of Food Biochemistry, 41:e12346. https://doi.org/10.1111/jfbc.12346

Pérez-Navarro, J; García-Romero, E; Gómez-Alonso, S; Izquierdo-Cañas, PM. 2018. Comparison between the phenolic composition of Petit Verdot wines elaborated at different maceration/fermentation temperatures. International Journal Food Propiertes, 21: 996-1007. https://doi.org/10.1080/10942912.2018.1479856

Sartor, S; Malinovski, L; Caliari, V; et al. 2017. Particularities of Syrah wines from different growing regions of Southern Brazil: grapevine phenology and bioactive compounds. Journal Food Science Technology, 54: 1414–1424. https://doi.org/10.1007/s13197-017-2557-0

Snopek, L; Mlcek, J; Sochorova, L; Baron, M; Hlavacova, I; Jurikova, T; Kizek, R; Sedlackova, E; Sochor J. 2018. Contribution of red wine consumption to human health protection. Molecules 23:1684. https://doi:10.3390/molecules23071684

Vrcek, I; Bojic, M; Zuntar, I; Mendaša, G; Medić-Šarićb, M.2011. Phenol content, antioxidant activity and metal composition of croatian wines deriving from organically and conventionally grown grapes. Food Chemistry, 124: 354-361. https://doi.org/10.1016/j.foodchem.2010.05.118

Mahboubi, A; Kamalinejad, M; Ayatollahi, A; Babaeian, M. 2014. Total phenolic content and antibacterial activity of five plants of labiatae against four foodborne and some other bacteria. Iran J Pharm Res 13:559-566.

Amzad, H; Shah, M. 2015.A study on the total phenols content and antioxidant activity of essential oil and different solvent extracts of endemic plant Merremia borneensis. Arabian Journal of Chemistry, 8: 66–71. https://doi.org/10.1016/j.arabjc.2011.01.007

Csepregi, K; Neugart, S; Schreiner, M; Hideg, E. 2016. Comparative Evaluation of Total Antioxidant Capacities of Plant Polyphenols. Molecules 21(2), 208. https://doi:10.3390/molecules21020208

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Downloads

Download data is not yet available.